OmniAI
OmniAI provides a unified Ruby API for integrating with multiple AI providers, including Anthropic, DeepSeek, Google, Mistral, and OpenAI. It streamlines AI development by offering a consistent interface for features such as chat, text-to-speech, speech-to-text, and embeddings—ensuring seamless interoperability across platforms. Switching between providers is effortless, making any integration more flexible and reliable.
📄 Examples
Example #1: 💬 Chat w/ Text
This example demonstrates using OmniAI
with Anthropic to ask for a joke. The response is parsed and printed.
require 'omniai/anthropic'
client = OmniAI::Anthropic::Client.new
puts client.chat("Tell me a joke").text
Why don't scientists trust atoms? Because they make up everything!
Example #2: 💬 Chat w/ Prompt
This example demonstrates using OmniAI
with Mistral to ask for the fastest animal. It includes a system and user message in the prompt. The response is streamed in real time.
require "omniai/mistral"
client = OmniAI::Mistral::Client.new
client.chat(stream: $stdout) do |prompt|
prompt.system "Respond in both English and French."
prompt.user "What is the fastest animal?"
end
**English**: The peregrine falcon is generally considered the fastest animal, reaching speeds of over 390 km/h.
**French**: Le faucon pèlerin est généralement considéré comme l'animal le plus rapide, atteignant des vitesses de plus de 390 km/h.
Example #3: 💬 Chat w/ Vision
This example demonstrates using OmniAI
with OpenAI to prompt a “biologist” for an analysis of photos, identifying the animals within each one. A system and user message are provided, and the response is streamed in real time.
require "omniai/openai"
client = OmniAI::OpenAI::Client.new
CAT_URL = "https://images.unsplash.com/photo-1472491235688-bdc81a63246e?q=80&w=1024&h=1024&fit=crop&fm=jpg"
DOG_URL = "https://images.unsplash.com/photo-1517849845537-4d257902454a?q=80&w=1024&h=1024&fit=crop&fm=jpg"
client.chat(stream: $stdout) do |prompt|
prompt.system("You are a helpful biologist with expertise in animals who responds with the Latin names.")
prompt.user do ||
.text("What animals are in the attached photos?")
.url(CAT_URL, "image/jpeg")
.url(DOG_URL, "image/jpeg")
end
end
The first photo is of a cat, *Felis Catus*.
The second photo is of a dog, *Canis Familiaris*.
Example #4: 💬 Chat w/ Tools
This example demonstrates using OmniAI
with Google to ask for the weather. A tool “Weather” is provided. The tool accepts a location and unit (Celsius or Fahrenheit) then calculates the weather. The LLM makes multiple tool-call requests and is automatically provided with a tool-call response prior to streaming in real-time the result.
require 'omniai/google'
client = OmniAI::Google::Client.new
class WeatherTool < OmniAI::Tool
description "Lookup the weather for a lat / lng."
parameter :lat, :number, description: "The latitude of the location."
parameter :lng, :number, description: "The longitude of the location."
parameter :unit, :string, enum: %w[Celsius Fahrenheit], description: "The unit of measurement."
required %i[lat lng]
# @param lat [Float]
# @param lng [Float]
# @param unit [String] "Celsius" or "Fahrenheit"
#
# @return [String] e.g. "20° Celsius at lat=43.7 lng=-79.4"
def execute(lat:, lng:, unit: "Celsius")
puts "[weather] lat=#{lat} lng=#{lng} unit=#{unit}"
"#{rand(20..50)}° #{unit} at lat=#{lat} lng=#{lng}"
end
end
class GeocodeTool < OmniAI::Tool
description "Lookup the latitude and longitude of a location."
parameter :location, :string, description: "The location to geocode."
required %i[location]
# @param location [String] "Toronto, Canada"
#
# @return [Hash] { lat: Float, lng: Float, location: String }
def execute(location:)
puts "[geocode] location=#{location}"
{
lat: rand(-90.0..+90.0),
lng: rand(-180.0..+180.0),
location:,
}
end
end
tools = [
WeatherTool.new,
GeocodeTool.new,
]
client.chat(stream: $stdout, tools:) do |prompt|
prompt.system "You are an expert in weather."
prompt.user 'What is the weather in "London" in Celsius and "Madrid" in Fahrenheit?'
end
[geocode] location=London
[weather] lat=... lng=... unit=Celsius
[geocode] location=Madrid
[weather] lat=... lng=... unit=Fahrenheit
The weather is 24° Celsius in London and 42° Fahrenheit in Madrid.
For a set of pre-built tools for interacting with browsers, databases, docker, and more try the OmniAI::Tools project.
Example #5: 💬 Chat w/ History
Tracking a prompt history over multiple user and assistant messages is especially helpful when building an agent like conversation experience. A prompt can be used to track this back-and-forth conversation:
require "omniai/openai"
puts("Type 'exit' or 'quit' to leave.")
client = OmniAI::OpenAI::Client.new
conversation = OmniAI::Chat::Prompt.build do |prompt|
prompt.system "You are a helpful assistant. Respond in both English and French."
end
loop do
print "> "
text = gets.chomp.strip
next if text.empty?
break if text.eql?("exit") || text.eql?("quit")
conversation.user(text)
response = client.chat(conversation, stream: $stdout)
conversation.assistant(response.text)
end
Example #6 💬 Chat w/ Schema
Requesting structured data back from an LLM is possible by defining a schema, then passing the schema into the chat. The following example defines a structured schema using OmniAI::Schema
to model a Contact
. The results of the LLM call are then parsed using the schema to ensure all types are correct.
format = OmniAI::Schema.format(name: "Contact", schema: OmniAI::Schema.object(
description: "A contact with a name, relationship, and addresses.",
properties: {
name: OmniAI::Schema.string,
relationship: OmniAI::Schema.string(enum: %w[friend family]),
addresses: OmniAI::Schema.array(
items: OmniAI::Schema.object(
title: "Address",
description: "An address with street, city, state, and zip code.",
properties: {
street: OmniAI::Schema.string,
city: OmniAI::Schema.string,
state: OmniAI::Schema.string,
zip: OmniAI::Schema.string,
},
required: %i[street city state zip]
)
),
},
required: %i[name]
))
response = client.chat(format:) do |prompt|
prompt.user <<~TEXT
Parse the following contact:
NAME: George Harrison
RELATIONSHIP: friend
HOME: 123 Main St, Springfield, IL, 12345
WORK: 456 Elm St, Springfield, IL, 12345
TEXT
end
puts format.parse(response.text)
{
name: "George Harrison",
relationship: "friend",
addresses: [
{ street: "123 Main St", city: "Springfield", state: "IL", zip: "12345" },
{ street: "456 Elm St", city: "Springfield", state: "IL", zip: "12345" },
]
}
Example #7: 🐚 CLI
The OmniAI
gem also ships with a CLI to simplify quick tests.
# Chat
omniai chat "Who designed the Ruby programming language?"
omniai chat --provider="google" --model="gemini-2.0-flash" "Who are you?"
## Speech to Text
omniai speak "Salley sells sea shells by the sea shore." > ./files/audio.wav
# Text to Speech
omniai transcribe "./files/audio.wav"
# Embed
omniai embed "What is the capital of France?"
Example #8: 🔈 Text-to-Speech
This example demonstrates using OmniAI
with OpenAI to convert text to speech and save it to a file.
require 'omniai/openai'
client = OmniAI::OpenAI::Client.new
File.open(File.join(__dir__, 'audio.wav'), 'wb') do |file|
client.speak('Sally sells seashells by the seashore.', format: OmniAI::Speak::Format::WAV) do |chunk|
file << chunk
end
end
Example #9: 🎤 Speech-to-Text
This example demonstrates using OmniAI
with OpenAI to convert speech to text.
require 'omniai/openai'
client = OmniAI::OpenAI::Client.new
File.open(File.join(__dir__, 'audio.wav'), 'rb') do |file|
transcription = client.transcribe(file)
puts(transcription.text)
end
Example #10: 💻 Embeddings
This example demonstrates using OmniAI
with Mistral to generate embeddings for a dataset. It defines a set of entries (e.g. "George is a teacher." or "Ringo is a doctor.") and then compares the embeddings generated from a query (e.g. "What does George do?" or "Who is a doctor?") to rank the entries by relevance.
require 'omniai/mistral'
CLIENT = OmniAI::Mistral::Client.new
Entry = Data.define(:text, :embedding) do
def initialize(text:)
super(text:, embedding: CLIENT.(text).)
end
end
ENTRIES = [
Entry.new(text: 'John is a musician.'),
Entry.new(text: 'Paul is a plumber.'),
Entry.new(text: 'George is a teacher.'),
Entry.new(text: 'Ringo is a doctor.'),
].freeze
def search(query)
= CLIENT.(query).
results = ENTRIES.sort_by do |data|
Math.sqrt(data..zip().map { |a, b| (a - b)**2 }.reduce(:+))
end
puts "'#{query}': '#{results.first.text}'"
end
search('What does George do?')
search('Who is a doctor?')
search('Who do you call to fix a toilet?')
'What does George do?': 'George is a teacher.'
'Who is a doctor?': 'Ringo is a doctor.'
'Who do you call to fix a toilet?': 'Paul is a plumber.'
📦 Installation
The main omniai
gem is installed with:
gem install omniai
Specific provider gems are installed with:
gem install omniai-anthropic
gem install omniai-deepseek
gem install omniai-mistral
gem install omniai-google
gem install omniai-openai
📖 Usage
OmniAI implements APIs for a number of popular clients by default. A client can be initialized using the specific gem (e.g. omniai-openai
for OmniAI::OpenAI
). Vendor specific docs can be found within each repo.
Client
OmniAI::Anthropic
require 'omniai/anthropic'
client = OmniAI::Anthropic::Client.new
OmniAI::DeepSeek
require 'omniai/deepseek'
client = OmniAI::DeepSeek::Client.new
OmniAI::Llama
require 'omniai/llama'
client = OmniAI::Llama::Client.new
OmniAI::Google
require 'omniai/google'
client = OmniAI::Google::Client.new
OmniAI::Mistral
require 'omniai/mistral'
client = OmniAI::Mistral::Client.new
OmniAI::OpenAI
require 'omniai/openai'
client = OmniAI::OpenAI::Client.new
Usage with LocalAI
LocalAI support is offered through OmniAI::OpenAI:
Usage with Ollama
Ollama support is offered through OmniAI::OpenAI:
Logging
Logging the request / response is configurable by passing a logger into any client:
require 'omniai/openai'
require 'logger'
logger = Logger.new(STDOUT)
client = OmniAI::OpenAI::Client.new(logger:)
[INFO]: POST https://...
[INFO]: 200 OK
...
Timeouts
Timeouts are configurable by passing a timeout
an integer duration for the request / response of any APIs using:
require 'omniai/openai'
require 'logger'
logger = Logger.new(STDOUT)
client = OmniAI::OpenAI::Client.new(timeout: 8) # 8 seconds
Timeouts are also configurable by passing a timeout
hash with timeout
/ read
/ write
keys using:
require 'omniai/openai'
require 'logger'
logger = Logger.new(STDOUT)
client = OmniAI::OpenAI::Client.new(timeout: {
read: 2, # i.e. 2 seconds
write: 3, # i.e. 3 seconds
connect: 4, # i.e. 4 seconds
})
💬 Chat
Clients that support chat (e.g. Anthropic w/ "Claude", Google w/ "Gemini", Mistral w/ "LeChat", OpenAI w/ "ChatGPT", etc) generate completions using the following calls:
Completions using a Simple Prompt
Generating a completion is as simple as sending in the text:
completion = client.chat('Tell me a joke.')
completion.text # 'Why don't scientists trust atoms? They make up everything!'
Completions using a Complex Prompt
More complex completions are generated using a block w/ various system / user messages:
completion = client.chat do |prompt|
prompt.system 'You are a helpful assistant with an expertise in animals.'
prompt.user do ||
.text 'What animals are in the attached photos?'
.url('https://.../cat.jpeg', "image/jpeg")
.url('https://.../dog.jpeg', "image/jpeg")
.file('./hamster.jpeg', "image/jpeg")
end
end
completion.text # 'They are photos of a cat, a cat, and a hamster.'
Completions using Streaming via Proc
A real-time stream of messages can be generated by passing in a proc:
stream = proc do |chunk|
print(chunk.text) # '...'
end
client.chat('Tell me a joke.', stream:)
Completion using Streaming via IO
The above code can also be supplied with any IO object (e.g., File
, $stdout
, $stdin
, etc.):
client.chat('Tell me a story', stream: $stdout)
Completion with Tools
A chat can also be initialized using tools:
class WeatherTool
description "Lookup the weather at a location in either Celsius or Fahrenheit."
parameter :location, :string, description: "The location to find the weather."
parameter :unit, :string, enum: %w[Celsius Fahrenheit], description: "The unit of measurement."
required %i[location]
# @param location [String]
# @param unit [String] "Celsius" or "Fahrenheit"
#
# @return [Hash]
def execute(location:, unit: "Celsius")
puts "[weather] location=#{location} unit=#{unit}"
{
temperature: "#{rand(20..50)}°",
humidity: rand(0..100),
}
end
end
client.chat('What is the weather in "London" in Celsius and "Paris" in Fahrenheit?', tools: [WeatherTool.new])
🎤 Speech to Text
Clients that support transcribe (e.g. OpenAI w/ "Whisper") convert recordings to text via the following calls:
Transcriptions with Path
transcription = client.transcribe("example.ogg")
transcription.text # '...'
Transcriptions with Files
File.open("example.ogg", "rb") do |file|
transcription = client.transcribe(file)
transcription.text # '...'
end
🔈 Text to Speech
Clients that support speak (e.g. OpenAI w/ "Whisper") convert text to speech via the following calls:
Speech with Stream
File.open('example.ogg', 'wb') do |file|
client.speak('The quick brown fox jumps over a lazy dog.', voice: 'HAL') do |chunk|
file << chunk
end
end
Speech with File
tempfile = client.speak('The quick brown fox jumps over a lazy dog.', voice: 'HAL')
tempfile.close
tempfile.unlink
💻 Embeddings
Clients that support generating embeddings (e.g. OpenAI, Mistral, etc.) convert text to embeddings via the following:
response = client.('The quick brown fox jumps over a lazy dog')
response.usage # <OmniAI::Embed::Usage prompt_tokens=5 total_tokens=5>
response. # [0.1, 0.2, ...] >
Theese APIs support generating embeddings in batches using the following code:
response = client.([
'The quick brown fox jumps over a lazy dog',
'Pack my box with five dozen liquor jugs',
])
response.usage # <OmniAI::Embed::Usage prompt_tokens=5 total_tokens=5>
response..each do ||
# [0.1, 0.2, ...]
end
🐚 CLI
OmniAI packages a basic command line interface (CLI) to allow for exploration of various APIs. CLI documentation is available with the --help
flag:
omniai --help
Chat
w/ a Prompt
omniai chat "What is the coldest place on earth?"
The coldest place on earth is Antarctica.
w/o a Prompt
omniai chat --provider="openai" --model="gpt-4" --temperature="0.5"
Type 'exit' or 'quit' to abort.
# What is the warmest place on earth?
The warmest place on earth is Africa.
Embed
w/ input
omniai embed "The quick brown fox jumps over a lazy dog."
0.0
...
w/o input
omniai embed --provider="openai" --model="text-embedding-ada-002"
Type 'exit' or 'quit' to abort.
# What is the capital of Spain?
The capital of Spain is **Madrid**.
0.0
...
Text-to-Speech
omniai speak "Sally sells sea shells on the sea shore." > audio.aac
Speech-to-Text
omniai transcribe ./audio.aac
MCP
MCP is an open protocol designed to standardize giving context to LLMs. The OmniAI implementation supports building an MCP server that operates via the stdio transport.
main.rb
class Weather < OmniAI::Tool
description "Lookup the weather for a location"
parameter :location, :string, description: "A location (e.g. 'London' or 'Madrid')."
required %i[location]
# @param location [String] required
# @return [String]
def execute(location:)
case location
when 'London' then 'Rainy'
when 'Madrid' then 'Sunny'
end
end
end
transport = OmniAI::MCP::Transport::Stdio.new
mcp = OmniAI::MCP::Server.new(tools: [Weather.new])
mcp.run(transport:)
ruby main.rb
{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/call",
"params": { "name": "echo", "arguments": { "message": "Hello, world!" } }
}